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Abstract—Attribute-based encryption describes the access pol-
icy with the attribute information of users. In practice, attributes
usually have a certain lifespan. The existing time-based access
control methods directly relate attribute keys to time. Thus, under
the constraint of fine-grained time, when the attribute expires,
the update of key and policy adds a large additional burden to
the data user and owner. In this paper, we propose a dynamic
attribute-based access control scheme to set a fine-grained valid
time period for each attribute, which not only facilitates dynamic
data sharing, but also enables flexible attribute revocation. We use
smart contract to set valid time period for attributes. It provides
smart management on users‘ attributes and avoids the waiting
time of CSP caused by manual operations. We also introduce
trapdoor that are indirectly related to time and proxy decryption
method to reduce computational cost on data owners and users.
Extensive security and performance analysis shows the security
strength and effectiveness of the proposed scheme.

Index Terms— Attributed-based encryption, Smart contract,
Trapdoor, Proxy decryption

I. INTRODUCTION

AMONG a large number of cloud-oriented data access
control mechanisms, attribute-based access control is

widely studied for its one-to-many and fine-grained features.
The data owner does not need to know the specific identity of
the user when encrypting the data, but only needs to use de-
scriptive attributes to formulate the access policy. Data access
users can access data associated with access policies according
to their attributes. This allows the data owner to decide which
attributes a user meets can access his data. However, the
existing work only considers the user’s entity attributes and
ignores the necessary environmental factors. In practice, in
many application scenarios, attributes have a certain lifetime.
So time is an important attribute constraint. For example, a
user subscribes to a video membership for a period of time.
During the subscription period, it has a membership attribute.
After the subscription period, the membership attribute is
revoked and returned to the ordinary members. In this system,
the user’s attribute of role has a valid time period. The
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same requirements also exist in applications such as personnel
management and copyright document management.

However, the existing time-based mechanisms[1], [2], [3],
[4], [5], [6] still have the following problems: 1) Existing
solutions are more suitable for coarse-grained time-accurate
access validity periods. If the data owner wants to revoke the
user from the system at any time, an excessive cost will be
required to ensure fine-grained time precision, such as seconds.
2) Time constraints are directly related to attribute policies.
Owners upload encrypted data with different strategies at each
release time, which makes it impossible for expected users
to access data before the corresponding time arrives. Owners
repeatedly upload different encrypted versions of the same
data, which brings unnecessary cost to data owners. 3) Time
constraints are directly related to the attribute keys, which
requires the authority to continuously publish the time attribute
keys to the user.

This paper aims to implement an attribute-based access
control mechanism based on time factor. Only the user satis-
fying both time and entity attributes can access data correctly.
In this paper, an attribute-base access control method based
on Smart Contract and Trapdoors(SCT-ABAC) is constructed
to solve the above problems in time-based access control.
The smart contract[7] is a self-executable code deployed on
the blockchain[8], maintained by the miner node, which can
effectively reduce the maintenance cost of the attribute by the
central authority. And the introduction of trapdoor[9] makes
the attributes of access policy not directly related to time,
which can effectively reduce the coupling between access
policy and time, thus reducing the policy update cost of data
owners. Specifically, each outsourced resource is associated
with an access policy consisting of a set of attributes, each
of which is set a trapdoor. The central authority issues or
updates user attributes and their expiration time by calling
smart contracts, and issues a trapdoor release key to semi-
trusted cloud to release trapdoors. When the user requests data
from the cloud, the cloud service invokes the smart contract to
query the valid attribute set, and uses the trapdoor decryption
key to release these attributes in the access policy.

The main contributions of this paper can be summarized as
follows:

1) A fine-grained time-based dynamic attribute access con-
trol mechanism, TSC-ABAC, is proposed by introducing trap-
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Fig. 1. System model of the proposed TSC-ABAC scheme.

door and smart contract technology in CP-ABE. The validity
period of the attribute can be accurate to second.

2) In the encryption process, the introduction of trapdoors
that are indirectly related to time reduces the unnecessary cost
on the data owner when the attributes expire.

3) We propose a proxy decryption algorithm in the access
control scheme. The computing cost of decryption is mainly
undertaken by the cloud server. Therefore, the scheme achieves
lightweight decryption for users.

The organization of this paper is as follows. In SectionII, we
present the system model and state the security assumption.
SectionIII gives the detailed algorithm of our TSC-ABAC.
SectionIV analyzes the security and performance. Finally,
SectionV is a conclusion of this paper.

II. SYSTEM MODEL

A. System model

As illustrated in Fig. 1. This system model includes the
following entities: central authority(CA), data owner(Owner),
data user(user), cloud service provider (CSP) and a blockchain
network.

Central Authority (CA) is responsible for managing the
security of the whole system. It publishes the public parameter
PK of the system, issues the attribute private key ASK and
trapdoor release key TSK for each user and CSP. The validity
period of the user attribute is set in the smart contract. The
smart contract plays the role of checking time to determine
the valid set of attributes.

The data owner(Owner) uploads data to CSP for sharing.
It first constructs access policies according to the attribute set
and the trapdoors associated with CSP, and then encrypts data
with the access policy and uploads it to CSP.

The cloud service provider (CSP) stores the ciphertexts
uploaded by owner, and decides whether to release the trap-
doors of corresponding attributes in the access policy accord-
ing to the smart contract. The result of the proxy decryption
is then calculated and sent to user.

The user(User) obtains attribute keys from CA, and re-
quests data from the cloud. Only satisfy the following two
conditions can users decrypt successfully: 1) The attribute keys
satisfy the data access policy. 2) Current access time is within
the validity period of the attributes.

The blockchain network is a decentralized P2P network.
Most of the nodes in the network keep the whole chain. The
miner node generates blocks through a multi-party consensus
mechanism, which ensures the proof-tamper characteristic of
blockchain. A smart contract is a piece of logic code deployed
on blockchain. It can also be regarded as a special transaction
that is sent out and recorded by a miner in a block. The
blockchain here mainly refers to the Ethereum blockchain.

In this model, the operations can be divided into two
phases: the attribute management phase and the access control
execution phase. In the attribute management phase, the CA
first issues an attribute key to the user, sets the validity period
of the attributes through the smart contract, and issues a
trapdoor release key to the CSP. In the access control execution
phase, the data owner first uploads the ciphertext, the CSP
invokes the contract to obtain the user’s valid attribute set,
and uses the trapdoor release key and the partial decryption
key to perform proxy decryption. Then the user performs final
decryption.

A more detailed description of the proxy decryption process
is as follows. The ciphertext uploaded by the data owner is
generated by an access policy such as ”A3∧(A2∨A1)”. Each
attribute in the access policy is associated with a trapdoor,
which specifies a CSP for proxy decryption. The CSP firstly
queries the user’s validity period attribute set by invoking
smart contract as A1, A2, and performs the first step of proxy
decryption with the trapdoor release key. This process is
equivalent to releasing valid attributes in the access policy.
Then the CSP performs the second step of proxy decryption
using partial attribute key provided by the user, and computes
the intermediate result. The user finally decrypts through the
intermediate result.

B. Security assumption

In our proposed method, it is assumed that the CA is fully
trusted. The CA is responsible for generating the attribute
keys and the trapdoor release keys. It sets the validity period
of users’ attributes through the smart contract. Like most of
attribute-based access control schemes, the CSP is assumed
to be semi-trusted, that is, honest-but-curious, which provides
reliable storage services and performs computing tasks cor-
rectly, but it may attempt to obtain unauthorized data because
of personal interests. The user is untrusted. Malicious users
attempt to decrypt the ciphertext to obtain unauthorized data.
The proposed method can implement a fine-grained time-
based access control system. Only users whose attributes are
within the validity period and satisfy the access policy can
successfully decrypt the ciphertext.
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III. OUR CONSTRUCTION

A. Mathematical Background

Our proposed method is based on Bilinear Pairing. Let G,
GT be two multiplicative cyclic groups of prime order p, and
e : G × G → GT be a bilinear map, then the following
properties are satisfied: (1) Bilinearity:∀g, h ∈ G, a, b ∈
Z∗p , e(g

a, hb) = e(g, h)ab. (2) Non-degeneracy: ∃g ∈ G, such
that e(g, g) is a generator of GT .

B. Cryptographic Construction

We construct a time-based dynamic attribute access con-
trol scheme based on the CP-ABE mechanism. Our scheme
includes the following six algorithms:

1) Global Setup. Let G be a multiplicative cyclic group of
prime order p. g is a generator of G. e : G × G → GT is
a bilinear map. H1 : {0, 1}∗ → G∗, H2 : G∗T → Z∗p are two
hash functions. CA randomly selects the parameters α, β, r.
Then the public parameters of the system can be defined as

GPK = {G, g, p, h = gβ , f = g1/β , e(g, g)α, guc}

where uc is the unique identity of the cloud. uc and f are
used to construct trapdoors. The master key of the system is

MSK = {β, gα}.

2) Key Generation. Let the attribute set of user Uj be Sj . CA
randomly selects uj ∈ Z∗p as the unique identity of the user,
and chooses the random number ri ∈ Z∗p for each attribute i.
Then the private key of user j can be calculated as

SKj = (D,Di, D
′
i,∀i ∈ Sj),

where D = g(α+uj)/β , Di = g(uj)H1(i)
ri , D′i = gri ,∀i ∈

Sj . SKj is sent to Uj through a secure channel between CA
and Uj .

3) Trapdoor Key Generation. The CA generates a key TK =
guc/β for releasing the trapdoors in access policy, where uc is
the unique identity of the CSP.

4) Encryption. The data owner first encrypts the data M
with the symmetric key K ∈ GT . For the access policy tree
T used to encrypt the key K, each leaf node x is associated
with the secret parameters s0x and sT . s0x is associated with the
parent of the node, and sT is a trapdoor parameter. When x
is the root node R of the tree, parameter s ∈ Z∗p is randomly
selected such that s0R = s is the primary key of the data.
Starting from the root node, assign secret parameters to each
node. Then randomly select a number d ∈ Z∗p to calculate the
trapdoor as

TS = (A = gd, B = sT +H2(e(g
uc , f)d)),

where uc is the CSP specified by the data owner to conduct
proxy decryption. Let Attx be the corresponding attribute of
leaf node x. The final ciphertext uploaded is computed as

CT = (T,C ′, C, C, TS,Cx, C
′
x,∀x ∈ T ).

among them, C ′ = Enc(M,K), C = K · e(g, g)αs, C =
hs, Cx = gs

0
x·sT , C ′x = H1(Attx)

s0x·sT .

5) Proxy Decryption. The CSP obtains partial decryption
key Di, D

′
i from the user, and performs a bottom-up calcula-

tion process. For the leaf node x, if i ∈ Sj

Fx =
e(Cx, Di)

e(C ′x, D
′
i)

=
e(gs

0
x·sT , gujH1(i)

ri)

e(H1(Attrx)s
0
x·sT , gri)

= e(g, g)ujs
0
x·sT .

Otherwise, let Fx =⊥. Then, the CSP queries the attribute
set of the user that has not expired through a smart contract.
Smart contracts are deployed on blockchain, which have the
characteristics of non-tampering, thus ensuring the reliability
of the results of query. If x belongs to the attribute set,
the trapdoor is released as TS′ = B–H2(e(TK,A)) = sT .
Otherwise TS′ = 1. CSP uses TS′ to recalculate Fx, and
obtains

F̃x = Fx
TS′

=

{
e(g, g)ujs

0
x x is in validity period

e(g, g)ujs
0
x·sT x is not valid

If the user’s attribute satisfies the access policy and the
corresponding attribute is within the validity period, the CSP
can correctly perform the proxy decryption process. For the
root node R, if FR 6=⊥, then FR = e(g, g)ujs. Even if the
attacker obtains FR, but there is no decryption key D, the
plaintext still cannot be recovered. Finally, the CSP sends
CT ′ = (C ′, C, C, FR) to the user.

6) Decryption. The user recovery message content by cal-
culating

K ′ =
C

(e(C,D)/FR)
= K,M ′ = Dec(C ′,K) =M.

If the user’s attributes do not satisfy the access policy or the
validity period, the decryption fails.

C. Smart Contract Construction

Compile a smart contract used to manage the validity period
of users’ attributes and deploy it to the blockchain. Once
the smart contract is deployed successfully, the miner will
permanently record it in the blockchain and return the contract
address to the contract creator.

1) Attribute Validity Period Table (AVPT). In order to
manage the lifetime of attributes, we introduce an attribute
period table, which defines the validity period of each attribute
of the user. The time unit can be set as ”second, minute, hour,
day, week, year”. The implementation of the attribute time
table uses the mapping type, which has a unique storage model
in the blockchain. The CA assigns each user a set of attributes
and the lifetime of these attributes. To illustrate, consider the
following application scenarios. As shown in Fig. 2 , Alice is
a used car appraiser of an insurance company. Bob is a car
repairer of an automobile manufacturer. Each attribute of the
user is valid for a predetermined period of time.

2) Contract Deployment. As mentioned above, the smart
contract is mainly used to manage the APT. The corresponding
smart contract is briefly described in the algorithm1. The
CA sets, updates, and deletes terms in AVPTs through the
functions of addAtt, updateAtt, and deleteAtt respectively. The
CSP and CA query the unexpired attribute set through the
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Fig. 2. An example of AVPT.

checkAtt function. As a trusted authority, the CA’s address
and deployed contract address are published to the public. To
protect users’ privacy, the CA can specify CSPs that perform
checkAtt function.

IV. PERFORMANCE ANALYSIS

This section implements our proposed algorithm and gives
an intuitive performance evaluation. The experiment consists
of two parts, cryptographic algorithms and smart contract
deployment. Performance assessment will quantify the time
cost of cryptographic algorithms and smart contract operations,
respectively. We simulate the cryptographic algorithm based
on python-charm library 1 and compare it with the CP-ABE
algorithm[3] without trapdoors to evaluate its time cost. Smart
contracts are compiled and deployed through the Remix2

platform. Remix is an open source development environment
for solidity-based smart contract. It provides basic functions
such as compiling and deploying contracts to a local or test
Etherum network, and executing contracts. We interact with a
smart contract via the Web3.js API.

Performance of Cryptographic algorithms. In evalu-
ating the performance of the proposed attribute encryp-
tion mechanism, we use the most complex access strategy
”att1 AND att2 AND...attN”. When generating a ci-
phertext, each attribute is set a trapdoor related to CSP. The
number of trapdoors and the number of attributes in the policy
are both N , and the trapdoor can only be released by the
specified CSP. TableI shows the time performance when the
number of attributes is 20 and each algorithm runs 100 times.
In the proposed method, a trapdoor is a common parameter for

TABLE I
TIME COST OF CRYPTOGRAPHIC ALGORITHMS(IN SECONDS)

Algorithm Setup keyGen Encrypt Decrypt

Max Time 0.0228 0.0228 0.1663 0.0020
Min Time 0.0139 0.0139 0.0755 0.0006
Average Time 0.0187 0.0187 0.1042 0.0014

all users. It specifies the CSP that can release the trapdoor and
perform proxy decryption. Therefore, the CA only needs to
calculate and issue a trapdoor release key to the CSP, and does
not need to issue the time-related key periodically. As shown in
Fig.3, compared to the classic CP-ABE without trapdoors, with
the number of trapdoors increases, the additional encryption
burden on the data owner is negligible. During the decryption
process, the CSP releases the trapdoor and performs proxy

1https://github.com/JHUISI/charm
2http://remix.ethereum.org

Algorithm 1 Smart Contract on AVPT
Require: Function name, invoke parameters
Ensure: Setting up functions

1: Structure User {
2: string[] Attr;
3: uint[] period;
4: uint[] start;
5: }
6: function APT()
7: CA address ← sender.address
8: mapping(string ⇒ User) users
9: address CSPs[]

10: end function
11: function ADDATT(Uid,Attr, period)
12: if message.sender6=CA address then return 0
13: else
14: users[Uid].Attr.push(Attr)
15: users[Uid].period.push(period)
16: users[Uid].start.push(now)
17: end if
18: end function
19: function UPDATEATT(Uid, oldAtt, newAtt, newPeriod)
20: if message.sender6=CA address then return 0
21: else
22: if oldAtt=users[Uid].Attr[i] then index=i
23: end if
24: users[Uid].Attr[index] ← newAtt;
25: users[Uid].period[index] ← newPeriod;
26: end if
27: end function
28: function DELETEATT(Uid,Att)
29: if message.sender6= CA address then return 0
30: else
31: if oldAtt=users[Uid].Attr[i] then index=i
32: end if
33: users[name].strArr[i]=users[name].Attr[i+1]
34: users[name].period[i]=users[name].period[i+1]
35: users[name].start[i]=users[name].start[i+1]
36: len–
37: end if
38: end function
39: function SETCSPS(CSP address)
40: if message.sender6= CA address then return 0
41: else
42: CSPs.push(CSP address)
43: end if
44: end function
45: function CHECKATT(Uid)
46: if message.sender/∈ CSPs then return 0
47: else
48: uint[] index
49: if current time is not expired then index.push(j)
50: end if
51: deleteAtt(Uid, users[Uid].Attr[index])
52: return (users[Uid].Attr,users[Uid].period,
53: users[Uid].start)
54: end if
55: end function
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Fig. 3. Time cost of Encryption process versus number of trapdoors

Fig. 4. Time costs of proxy Decryption and Decryption process versus number
of trapdoors

decryption for each file. Here, the experimental environment
of proxy decryption is the same as that of the other cryp-
tographic algorithms. The performance is shown in Fig.4.
With the number of traps released increases, CSP bears the
main computational burden, and users only need to pay less
computational effort. Therefore, the proposed method provides
a flexible and lightweight access control system.

Performance of Smart contract . In order to improve the
efficiency of contract’s development, we choose to build a
local Ethereum test environment with Ganache which is offi-
cially supported by Ethereum. Web3.js is the official Javascript
API of Ethereum. It can be used to interact with Ethereum
Smart Contracts. Since Solidity only provides accuracy of
time to the second, we use javascript to get the time cost
for operations related to smart contract. TableII summarizes
the time cost of each operation in smart contract. Each call to
function is equivalent to submit a transaction, and the result
of the call is returned after the transaction is successful. The

TABLE II
TIME COST OF SMART CONTRACT

Algorithms Time Cost(in seconds)

addAtt 0.3605
checkAtt 0.3017
updateAtt 0.3204
deleteAtt 0.3269

time cost of all operations is in seconds and the measurement
is the average of 100 times of function calls.

V. CONCLUSION

In this paper, an attribute-based access control scheme
based on time domain, SCT-ABAC, is proposed under the
collaboration of cloud and blockchain. This solution intro-
duces proxy decryption in the access control system, and the
decrypted computing task is mainly undertaken by the cloud
server. The analysis shows that the user’s computation cost
in the decryption process is almost a constant. Therefore, the
scheme achieves lightweight decryption and can be applied to
situations where data requesters have limited resources, such
as IoV and IoT devices. The central authority specifies the
attributes of the user and its expiration date through smart
contract. The operation functions of AVPT defined in smart
contract is executed by miner nodes in blockchain. The miner
nodes need to bear the computational and storage cost of the
AVPT. The distributed ledger and decentralized consensus of
the blockchain ensure that the AVPT is secure, reliable and
proof-tamper. Our scheme can realize that only the users’
attributes within the validity period satisfy the access policy
can decrypt correctly, thus ensuring data confidentiality.
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