2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

A Security Model and Implementation of Embedded
Software Based on Code Obfuscation

15 Jiajia Yi
University of Electronic Science and
Technology of China
Chengdu, China

4% Yun Li
Guangdong Weichen Information
Technology Co., Ltd
Guangdong, China
liy@vecentek.com

Abstract—Current approaches for the security of embedded
software mainly focused on some specific platforms. In this
paper, a security model based on code obfuscation is applied to
embedded software. A control flow flattening algorithm is used
to implement an automated obfuscator, which obfuscates C code
first, and does source-to-source conversions to protect software
on different platforms. The effectiveness of code obfuscation is
evaluated by a multi-level quantitative model proposed in this
paper. Related experiments are carried out on the
NUCI40VE3CN board and MC9S12XEP100MAG board,
which are typical hardware platforms used in the application
domain of automotive. The result of experiments shows that for
one thing, the quantitative value of the effectiveness of the
obfuscated program is obviously higher than that of the original
program, namely the strength for software to keep it from being
reversed is greater, and the overhead of time and space is
acceptable; for another, the efficiency of the evaluation model is
also demonstrated.

Keywords— software security, code obfuscation, embedded
system, evaluation model

L

Intelligent and connected embedded systems have not only
brought convenience to life, but also introduced potential
security threats. For example, the automotive industry, a
typical application domain of embedded systems, is under the
threat of illegal intrusion. Jeep and Tesla, known by the
community as reported, were hacked into their internal control
systems. With the emergence of serious problems, security is
no longer a negligible factor in embedded system design [1].
While it is not that easy to protect embedded systems because
of their limited resources and high demand for real-time
performance. The security mechanism of PC usually not
suitable for embedded systems.

INTRODUCTION

There are many embedded devices with extremely limited
software and hardware resources, especially for deep
embedded devices such as engine control units and vehicle
control systems. Therefore, a suitable scheme starting from
the security of embedded software itself to improve the
security of the system is needed. By carefully handling
sensitive information, the security of embedded software can
be improved significantly and thus can improve the whole.
There are some commonly used software protection
technologies in embedded systems such as watermarking,
tamper-proofing, obfuscation [4], secure boot [5], control flow
integrity check [5], TrustZone technology [6], fingerprint and
encryption [8], address space layout randomization [9],
authentication [10], secure processor [11], memory protect

2324-9013/20/$31.00 ©2020 IEEE
DOI 10.1109/TrustCom50675.2020.00222

2 Lirong Chen
University of Electronic Science and
Technology of China
Chengdu, China
Irchen@uestc.edu.cn

5% Huanyu Zhao
Guangdong Weichen Information
Technology Co., Ltd
Guangdong, China
zhaohy@vecentek.com

1606

3" Haitao Zhang
University of Electronic Science and
Technology of China
Shanghai Automotive Industry
Corporation Technology Center
Shanghai, China
zhanghaitao01@saicmotor.com

[12], the secrecy capacity of wiretap channel [13], etc. The
main idea of code obfuscation is to transform the code into a
form that is functionally equivalent but difficult to read and
understand by illegal hackers, making it more difficult for the
reverse engineering [2]. Compared with other protection
technologies mentioned above, code obfuscation combines
the following advantages:

1) Significant protection effect: The equivocal program
logic after obfuscation increases the difficulty of malicious
analysis and the cost of reverse engineering.

2) Wide application prospects: Either source code or
intermediate code can be obfuscated, which are more fixed in
format and widely applicable to different environments than
binary code. We do not disguise the fact that it has been
applied to our automobile electronic software protection on
different platforms.

3) Technical feasibility: Neither additional hardware
knowledge nor any specific research on embedded hardware
architecture is needed, we just focus on the characteristics of
the source code itself.

4) Low overhead: The low overhead of code obfuscation
determines that it is appropriate for the systems with limited
resources.

Although obfuscation technology plays an important role
in software security, the current researches in the field of
embedded system are mainly limited to the specific
architecture, hardware obfuscation, or the operation of some
instructions. Our contributions are as follows:

e Comprehensively considering the characteristics and
special requirements of embedded systems, a security
model for embedded software based on code

obfuscation is proposed.

A multi-level quantitative model is proposed to
evaluated the effectiveness of code obfuscation.

An automatic obfuscator used to protect software on
multiple embedded platforms has been implemented.

The designed experiments verify the function of the
obfuscator and the correctness of the evaluation model.

The rest of this paper is organized as follows. Section II
discusses the background and the threat model. Section III
discusses some feasible code obfuscation methods. Section [V
is a detailed introduction of the multi-level quantitative
evaluation model. Section V elaborates on the design and

implementation of the obfuscator. Section VI reports the
evaluation results of the proposed method. Section VII gives
the conclusion.

II. BACKGROUND

A. Security threats to embedded systems

Software attacks are major threats to embedded systems,
especially for those can download code remotely. These
attacks may be implemented by malicious agents such as
viruses, worms, Trojans. They can weak the security of
embedded systems on various aspects such as integrity,
confidentiality and availability. Malicious software agents
craftily use the vulnerabilities or exposures of system
architecture to launch software attacks. Compared with
traditional PC computer systems, embedded systems usually
have strict constraints on CPU speed, memory capacity, power
consumption, etc. The security challenges of embedded
systems include the following aspects:

1) In terms of resources : The resources, cost and volume
of embedded systems are extremely limited, whereas higher
computing power and real-time performance are required,
which is significantly different from traditional (or general
purpose) computer systems. Security strategies for traditional
computer systems can not be simply applied to embedded
systems.

2) In terms of working environment: Embedded systems
work in different environments and may be exposed to unsafe
or untrusted cases, which increases the probability of being
threatened and attacked.

3) In terms of software vulnerabilities: Embedded
applications, databases and operating systems are huge in
scale, complex in structure and function. Problems such as
data stealing, code usurping that may occur on each key point
seriously threaten the security of the system.

4) In terms of network attack: Nowadays most embedded
systems are connected to the Internet. Hackers can remotely
control the systems or steal sensitive information via the
network connections.

B. Threat model

We assume that the attackers have taken control of the
program. Malicious reverse analysts illegally access memory
or obtain internal information of the software. They will attack
the system, tamper or copy code, or take other illegal actions.
There are some technologies to protect embedded system to
some extent, such as random address space layout, memory
permissions check, authentication, control flow integrity
check, and schemes like TEE (Trusted Execution
Environment) or TrustZone. But they are unable to guarantee
absolute security, especially for those whose resources are too
limited to support these technologies . Attackers may read the
executable code from memory statically, or obtain the control
logic of the code by dynamically monitoring the execution
process. Their next step is to reverse the program.

The main goal is to increase the difficulty and the cost of
reverse analysis, especially for the embedded systems which
are lack of physical protection and easy to disclose their code.
Code obfuscation is applied to complicate the logic of the
program and reduce their readability to improve the software
security of embedded systems.

1607

C. Related work

New methods and algorithms are putting forward
constantly in the research of code obfuscation, but more
emphasis is put on the exploration of obfuscation technology
itself and seldom combined with the features and special
requirements of embedded systems. Collberg et al. [2] defined
and classified the obfuscation technology, and put forward the
evaluation indicators. Chenxi Wang proposed a control flow
flattening algorithm and proved the effectiveness against static
analysis [14], [15]. The realization of control flow flattening
algorithm of C++ was proposed in [16]. D. Xu etal. [17] sliced
the code and generated multiple random execution paths. Xie
et al. [18] reduced the accuracy of disassembly by overlapping
instructions and jumping instructions. Behera et al. tampered
the code and embedded self-modifying instructions to disrupt
static disassembly [19]. B. Yadegari [20] securely obfuscated
the class of conjunction functions. A approach that used
semantically equivalent to code clone within the source code
to obfuscate logical part of program text for JAVA [21].
However, none of the above have addressed the features and
requirements of embedded systems, nor have taken the
multiple running environment of the embedded software into
consideration. The previous achievements serve as the basis
of our work, on which we have made some improvements to
make them more suitable for embedded scenarios.

There are also some researches about software security for
embedded systems, but they mainly focused either on
hardware obfuscation, or on a specific architecture. LOCO [22]
realized a code obfuscation tool for some different platforms.
But it gradually does not work well on the new embedded
devices that appear over time. Related researches also include
code obfuscation on Android embedded devices [23], LLVM
code obfuscation under Win32 [24], code obfuscation based
on specific instructions swapping [25], hardware obfuscation
at the microarchitecture level on FPGA [26], the key-based
control flow obfuscation scheme for MIPS assembly
programs [27], the cost-effective obfuscation techniques
based on instruction set randomization on FPGA [28], etc.
However, these studies only implemented the security
technologies for specific platforms with limited scenarios. A
more general and automated code obfuscation tool works on
different platforms is needed.

The most appropriate evaluation methods for their
researches were also applied. For example, Timea Lasz16 [16]
used McCabe’s cyclomatic complexity metric [3] directly,
which is common in the research of obfuscation technology.
While the methods of analysis of the dynamic CFGs [25], [28],
the changed distribution of instruction [26] as well as the strict
overhead constraints were considered in the embedded
software evaluation scheme [28]. Our obfuscator is neither a
pure conversion of C language, nor is dependent on instruction
and architecture. Our evaluation model combines the two to
support the points discussed in this paper.

I11.

Code obfuscation hide the important information of the
program without changing the functionalities of the original
software. It can protect the storage of key data, sensitive
information, core procedures or algorithms, the calling
processes between programs or functions, the loopholes
contained in the code, etc. Increasing the complexity and
fuzziness of the program will reduce the readability of the
program and increase the difficulty of automatic reverse

FEASIBLE CODE OBFUSCATION METHODS

analysis and manual static analysis. The cost of reverse
engineering is far greater than the benefit, which is the key
idea to prevent software from being attacked by malicious
reverse engineering. The definition of code obfuscation is
described as below [2]:

We record P as the original program, P’ as the target
program, and 7 as the transformation from P to P'. That is, 7~
P — P ' If the original program P and the transformed target
program P' = T (P) are functionally equivalent with different
forms, then T is called the obfuscation transformation.

There are many types of code obfuscation, but we have to
find one that is most suitable for embedded systems. Code
obfuscation can be categorized into static and dynamic
obfuscation. The typical representatives of dynamic
obfuscation are self-modification code technology (SMC),
virtual machine protection technology (VMP), etc. This kind

of obfuscation requires dynamic changes during the execution.

Dynamic obfuscation technology often brings a lot of cost,
which is not suitable for embedded systems with the
requirements of high real-time and the limitation of resources.
The range of static obfuscation objects is very wide, including

source code, intermediate code and binary executable program.

And changing the shape of the program, protecting and hiding
the data, flattening the control flow, adding some opaque
predicates to change the structure of the program are all static
obfuscation technologies. Static obfuscation means that the
program has been modified before execution, and program
will not change dynamically, nor additional monitoring is
required. Therefore, static obfuscation brings less cost and is
more suitable for embedded systems.

Shape obfuscation, data obfuscation and control flow
obfuscation are all well know and classic static obfuscation
algorithms. There are three reasons that control flow
obfuscation is feasible to protect embedded system software.

(1) Shape obfuscation changes the key information of the
program. But the identifiers, function names, variable names
and other information in the source code can be optimized by
the compiler instead of being kept in the binary executable file

in C language, the widely used language in embedded systems.

Therefore, it is of little meaning to design a C language
obfuscator with shape obfuscation. (2) The purpose of data
obfuscation is to prevent attackers from extracting important
data from programs. In the software of embedded systems,
encryption is often used to protect the data instead of the
software code. And (3) the control flow obfuscation improves
the security of software by changing the structure of source
code and complicating the logic of the program. The method
is difficult to be anti-obfuscated or analyzed statically by
manual or automatic disassembly tools. Therefore, control
flow flattening algorithm is used to design and implement a
source code obfuscation tool.

The program’s control flow is "flattened" after control
flow flattening obfuscation as shown in figure 1 and figure 2.
The blocks originally belonging to different levels are placed
at the same level, which makes the static analysis a more
complex work because of its chaotic loop.

1608

if(array[max]
< array[i])

return max

Fig. 1. The control flow of the original program.

switch(next)

[|

if(array[max] <
‘ max =0; if(i<n) next = 2; ‘ array[i])

next=1; else next=5; next =3;
‘ ‘ else next=4;

max = i; next =
4

Fig. 2. The control flow after obfuscation.

IV. A MULTI-LEVEL QUANTITATIVE MODEL

Software evaluation indicators were proposed by Colberg
[2]: potency, resilience and cost, which respectively represent
the complexity of obfuscation algorithm, the resistance of the
obfuscated program to reverse analysis, and the extra time and
space overhead caused by code obfuscation. In addition,
embedded software usually has strict requirements for real-
time performance, storage space and other hardware resource
costs. Therefore, a multi-level quantitative model is proposed
to guide the design and evaluate the performance for our
obfuscator in the context of embedded system. It is an intuitive
representation of the requirements for embedded software
scenarios. We propose the concept of quantitative value of
effectiveness for code obfuscation, which presents: the
quantification of security, time overhead and space overhead
after obfuscation under the premise of ensuring all
functionalities unchanged.

A. Model building

The evaluation model consists of four layers: target layer
(V1), middle layer 1 (V>), middle layer 2 (V3), factor layer (V).
The weight of each layer is W;, W>, W3 Wrespectively. These
multi-level weighted attributes are used to establish the
mathematical model for quantitative evaluation. Figure 3
shows the hierarchical structure of the evaluation model.

Vi | .

Obfuscation Functional
effectiveness consistenc

V2
V3 Sec_unty Overhead
effectiveness
V4 [Control flow cycle ‘ Space ‘ ‘ Time H Functional ‘
complexity overhead overhead consistency

Fig. 3. Hierarchical structure of multi-level quantitative model.
The mathematical definition of the model is as follows:

0

VoW, v, =1

, v, =0

Target : F —{ (0]

Where F is the quantitative result of effectiveness, W is
the weight of elements in the corresponding level, and vj is the
element of layer V;. F'is equal to 0 when the functionalities of
some codes changed after obfuscation in V. The following
describes the specific steps of establishing the model.

First we get the input matrix input. There are k pieces of
codes or projects in the test set. We test their » attributes as the
elements of input in Vy, and the input matrix has the forms:

attr! attr} attr] attr!
atr? attr; attr] attr?

input =\ attr} attr; attr; attr? 2)
attr' attr} attrf attr!

Where attr; represents the j-th attribute from the i-#4 code.
In our model, the value of attribute includes the increase
percentage of control flow cyclomatic complexity, the
reciprocal of the increase percentage of space overhead, the
reciprocal of the increase percentage of time overhead and the
judgment of functional consistency. We hope that the smaller

the overhead of program growth after obfuscation is, the better.

So we take the percentage of space overhead and time
overhead as the reciprocal to reduce the quantitative value. It
is specified that attr, refers to "functional consistency",
shown in formula (3).

.o
attr! =
1

We get attr', = 0, when functionalities of some codes
changed after obfuscation. Then /= 0 and the evaluation ends.
Otherwise we proceed as follows.

, functional consistency

3)

, functional — inconsistency

First, normalize input matrix (4):

i
attr/.

= “1,2,k) (4)
' max(attr},attr -, attr}) T

And the normalized input matrix B as the output of V.

b11 blZ b13 bl(n—l)
bzl bzz b23 2(n-1)

B= b31 bsz b33 3(n-1) (5)
bkl bkz bk3 bk(nf])

1609

Second, the weight of each layer is determined. In different
demanding background, the weight is not always the same. In
order to simplify the model, the following methods shown in
formula (6) are used to determine the weight of each layer: V;
and ¥, directly describe the result of obfuscation, so their
weights are set to 1 directly; we can put the weight of security
effectiveness ws' and overhead w;” more flexibly according to
the needs in actual situation because the overhead of security
and security effectiveness in embedded system is usually
positively related in V3.

—w =1
Wl I/V2 (6)

1 _ 2 __
wy=a,w, =l-a

Formula (7) shows the method to calculate effectiveness
and overhead in V3. The input of V3 is normalized as matrix B
and its weight is W3.

Vi =byowy, +bywy, +- “+b1(l171)w3(n71)

Viy = by wy, +bywy, +- “+b2(n—])w3(n—l)

(7

Ve =bywy, +bwy, +--+ bk(/x—l)w3(n—l)

Combining the calculation of the ¥; and V>, we get F* in
formula (8), the quantitative value of effectiveness of
obfuscation when the functionality of k-#4 code or project is
consistent.

F'= (Z V3ilW2i)W1

F? =(Vsizwzf)wl
Z": (3)

F*= (Z V3ikW2i)Wl

V.

A. Challenge

Our automatic code obfuscator based on control flow
flattening combines the characteristics and functional
requirements of embedded system, and takes the balance
between the security and overhead into consideration. There
are four challenges to implement such an obfuscator: the
program before and after obfuscation must be functionally
equivalent , the obfuscator can be applied in different
embedded platforms, C language can be obfuscated by control
flow flattening algorithm, and balancing the security and cost.

SOFTWARE IMPLEMENTATION

1) Functionally equivalent : The syntax and semantics of
the program is needed to achieve this basic requirement, and
then equivalent transformation will be carried out. With the
help of compiler, we obtain abstract syntax tree (AST) of the
program and replace the original nodes in the tree with
equivalent content to rewrite the code into C code. However,
embedded software often needs specific non-open-source
compilers, so it is unlikely to get abstract syntax tree of
different programs from those compilers. Our approach is to
rewrite the open source C compiler and our choise is Clang.

2) Being available for different platforms: Embedded
platforms run binary code compiled from high-level program
language especially C language, but there are many different

hardware platforms running different binary code and using
different instruction sets. Our design is a general-purposed
obfuscator which can be used in different platforms. The
obfuscator works in source level conversion. It can
automatically obfuscate C code with control flow flattening
algorithm, and then output C code. The AST is obtained and
the program is transformed before generating the assembly
code. This step is independent of instruction set and
architecture.

3) Fully considering characteristics of C language: C
language has some grammar rules, such as the requirements
of variable declaration, assignment and use, the scope of
function and variable, the execution order of branch structure
and so on. Therefore, when using the control flow flattening
algorithm to obfuscate programs written in C language, we
should pay attention to these rules to ensure the correct
execution of the program after obfuscation.

4) Balancing the security and cost: Improving software
security will bring extra overhead. In order to reduce it, we
firstly chose a appropriate obfuscation algorithm. Then we
noticed that only the critical parts of a project needs to be
protected instead of all. Therefore, the obfuscator performs
obfuscation in units of functions, and the user decides which
functions need to be obfuscated.

B. System framework

The framework of the system is shown in Figure 4. P is the
input program, namely the original target program, and the
output program after obfuscation is P'. P and P’ are required
to be functionally consistent. After being preprocessed and
compiled, the abstract syntax tree and control flow graph of P
are obtained for further obfuscation. Obfuscation algorithm
ensures that P’ is more difficult to be reversed.

1.Rename variables
2.Separate variables' declaration
and assignment

» algorithm ; :
§ g 3.Program logic expansion
<] 4.CFG flatten
e
£ ,
Rewrite | P>
code

Fig. 4. System framework.

C. Algorithm implementation

The obfuscator works on function basis so that users can
choose functions those are critical to protect in order to
reduce the cost. Our obfuscator modifies the abstract syntax
tree and rewrites the modified abstract syntax tree into C
program to realize the conversion from source to source. The
nodes of the abstract syntax tree contain statements,
declarations and expressions of functions. In the process of
obfuscation, those messages of each function are firstly
obtained from the abstract syntax tree, and then they are
respectively obfuscated by control flow flattening algorithm.
The basic idea of control flow flattening algorithm is to break
and blur the relationship between the original blocks in the
program [16]. It uses switch-case to replace for, while, do-
while and other statements in the program. The basic method
is as follows.

Firstly, the control flow graph is constructed and basic
blocks of each function are acquired. Secondly, each basic

block is encapsulated in a different case, and all cases are
encapsulated in a switch. Then a dispatch variable is used to
determine the execution order of the basic blocks. Finally, the
switch-case statement is encapsulated in a loop body.
However, there are several problems need to be solved
because of the characteristics of C language.

1) Declaration and use of variables: In C language,
variables need to be declared at first and then used. But the
declaration and use of local variables may be divided into
different branches as the control flow changes, and errors
may occur. We bring forward the declaration of all variables
to the beginning of the function to solve this problem,.

2) Variable scope and namespace problem: Local
variables are allowed to use the same name in different scopes.
But advancing the declaration of all variables may cause
conflicts because of the variables with a same name. In
addition, we also need to solve the problem that the
declaration and assignment of const variables cannot be
separated, the processing problems of extern variables, the
processing problems of reference types and so on.

3) Execution sequence: The change of control flow may
cause the problem of execution sequence and the
functionalities of the program may be changed. We must
make sure that the program has a correct execution sequence.

The following steps are taken to implement automatic
source code level obfuscator. The original program to be
obfuscated is shown in Figure 5, for example. Function fun
includes variables, do-while statements, if statements, and
some operations.

void fun(){
int turn = 1;
do{
turn ++;
printf("turn = %d",turn);
if(turn == 15){
int newnum = turn * 2;
printf("newnum= %d" ,newnum);

)
} while(turn <20);
¥

Fig. 5. Program before obfuscation.

1) Preprocessing: The program is preprocessed and
compiled to obtain valuable information such as control flow
graph and abstract syntax tree.

2) Renaming variables to solve conflict on variables of
the same name: Develop a renaming mechanism to name all
variables as globally unique names. It is worth noting that
global variables may be referenced by other programs and
global variables have unique names, so they cannot and do
not need to be renamed. And external variables do not need
to be renamed, typedef does not need to be renamed,
enumeration type do not need to be renamed, structures and
members can not be renamed, and other special variables
cannot be renamed.

3) Advancing the declaration of variables and
separating declaration from assignment: Although putting
the declaration of variables in advance may change the scope
and living space of variables, there will be no problem with
conflict of variables because variables have already been set

1610

globally unique names in the previous step. It should be noted
that the declaration and assignment of the variables decorated
by const cannot be separated, the assignment of arrays need
to be expanded, and the conversion of reference type needs to
be pointer, etc.

4) Logical expansion : Logic extension is realized by
changing for, while and do-while statements into if-goto
statements. The if-goto statement visually indicates the
content of each basic block and determines the execution
order between different basic blocks. The use of variables is
not a hinder regardless of which base block they are placed in
after the first two steps.

5) Control flow flattening: Each basic block in the
control flow graph represents a jump branch and different
branches are encapsulated in the same layer, which makes the
control flow of the whole program flat. As shown in Figure 6,
the six basic blocks of the original program are converted into
SiX case statements, and a dispatch variable (var 2 in figure
6) is added to ensure the execution order is consistent with
the original.

void fun(){
int var 0, var 1, var 2=6;
while (var_2 !=0)
switch (var_2) {

case l:var 2 = O;break;

case 2:var 2 = 5;break;

case 3:
if (var_0 <20) {var 2 =2;}
else {var 2=1;}
break;

case 4:
var 2=3;
var 1 =var 0*2;

printf("newnum= %d",var_1);

break;

case 5:
var_0++;
printf("turn = %d",var 0);
if (var_0==15) {var 2=4;}

else {var 2 =3;}

break;
case 6:

var 2=15;

var 0=1;

break;

;

Fig. 6. Program after obfuscation.

6) Rewrite: The abstract syntax tree is modified by
replacing the subtree of the abstract syntax tree with the
corresponding processed content after obfuscation is

completed, as shown in Figure 7.

Stmts_list

Stmt_return
‘ Oper_ne “ Stmt_if ‘ Var

Fig. 7. Rewrite abstract syntax tree.

Stmt_return

‘ Oper ‘ ‘ Stmt “ Var ‘

cond body cond body

Rewriting the abstract syntax tree to C program, the
whole code obfuscation process is completed.

VI. EXPERIMENT

A. Experimental environment

Embedded systems have different hardware and software
resources according to different application environments. We
conducted experiments in vehicle control equipments, whose
hardware and software resources are relatively limited. They
are used for engine control systems and so on, running
lightweight operating systems. Experiments were carried out
on two representative automotive platforms, NUC140VE3CN
board and MC9S12XEP100MAG board. Parameters of the
platform are shown in Table 1.

TABLE L EXPERIMENTAL ENVIRONMENT
Platform Parameter Value
oS uC/0S
APROM 128KB
NUCl;l\?VE3C RAM 16KB
Flash 128K
Processor ARM Cortex MO
oS OSEK
EEPROM 4K
MC9S12XEP1 RAM 64K
00MAG Flash IM
Processor HCS12X
Frequency 6MHz
B. Resulsts

We carefully selected some important codes in each
project for obfuscation. Some codes of OSEK operating
system were obfuscated on MC9S12XEP100MAG, including
osekAlarm.c, osekEvent.c, osekCounter.c, osekDebug.c,
osekEvent.c, osekTask.c, osekExecution.c, osekInterrupt.c,
osckMessage.c, and the rest remained unchanged. We
designed 5 test programs (P1 to P5) ran on OSEK operating
system before and after obfuscation. And these test programs
themselves were not obfuscated. The obfuscated objects on
NUC140VE3CN board were all drivers and user code (P6 to
P9) instead of OS code, and these programs ran on the pC/OS
operating system.

1) The effectiveness of obfuscation evaluation: The
strength based measurement method [3] proposed by
McCabe is used to evaluate the security, which means to
calculate the cyclomatic complexity of control flow. The
higher the value, the greater the strength and the securer the
program. Table 2 shows the values of control flow cyclomatic
complexity of the tests. It can be seen that the strength of the
program increased after obfuscation, which proves that
obfuscation is significant.

TABLE II. CONTROL FLOW CYCLOMATIC COMPLEXITY OF PROJECTS
Control flow
cyclomatic
No. Project complexity times
Before After
P1 osekTask 607 994 1.6378
P2 osekIntCounterAlarm 481 868 1.8046
P3 osekResource 487 874 1.7947

P4 osekEvent 663 1150 1.7345
PS5 osekMessage 603 990 1.6418
P6 ucosTaksManager 195 438 2.2462
P7 | ucosPhilosopher_Repast 198 501 2.5303
P8 ucosTimer_Interrupter 234 498 2.1282
P9 ucosLCD_graphic 257 648 2.5214

2) Space and time overhead analysis: We tested the
storage occupied by programs as shown in Table 3. And table
4 shows the running time of different projects on OSEK or
nC/OS before and after obfuscation. Both of them are higher
than that of the original and vary with the tests and obfuscated
objects. This is related to comprehensive factors such as code
size, function content, and system calls. But the scale of the
increase is modest.

TABLE III. PROGRAM SIZE AND SPACE OVERHEAD
Space (KB)
No. Project Times
Before After
Pl osekTask 680.1600 | 697.7060 | 1.0258
P2 osekIntCounterAlarm 758.6550 | 763.3130 | 1.0061
P3 osekResource 787.5730 | 796.9530 | 1.0119
P4 osekEvent 769.2570 | 774.6410 | 1.0070
P5 oseckMessage 768.0130 | 776.7610 | 1.0114
P6 ucosTaksManager 388.6000 | 393.3760 | 1.0123
P7 | ucosPhilosopher Repast | 394.2520 | 401.4080 | 1.0182
P8 ucosTimer Interrupter 394.8080 | 398.5080 | 1.0094
P9 ucosLCD_graphic 354.816 360.424 1.0158
TABLEIV. PROGRAM RUNNING TIME AND TIME OVERHEAD
Running time (ms)
No. Project Times
Before After
P1 osekTask 5.0938 5.0977 1.0008
P2 osekIntCounterAlarm 7.6092 7.6145 1.0007
P3 osekResource 8.5840 10.4262 1.2144
P4 osekEvent 8.2497 8.6560 1.0493
PS5 osekMessage 9.6555 9.6597 1.0004
P6 ucosTaksManager 2.1677 4.3065 1.9867
P7 | ucosPhilosopher Repast 1.7606 3.2549 1.8488
P8 ucosTimer Interrupter 1.3564 1.8566 1.3689
P9 ucosLCD_graphic 4.4334 8.7661 1.9772

3) Quantitative value of effectiveness evaluation: The
experiment shows that functionalities of programs are
equivalent before and after obfuscation, so the quantitative
value of effectiveness is not equal to 0 according to the multi-
level quantitative model proposed above as shown is table 5.
Since the elements of the input matrix before obfuscation are
all equal to 1 according to the model, the quantitative values
of the original are the same (0.6976).

TABLE V. QUANTITATIVE VALUE OF EFFECTIVENESS
. uantitative value .
No. Project Q . Times
of effectiveness

1612

Before After
P1 osekTask 0.6976 0.8221 1.1785
P2 osekIntCounterAlarm 0.6976 0.8549 1.2255
P3 osekResource 0.6976 0.8076 1.1577
P4 osekEvent 0.6976 0.8293 1.1888
PS5 osekMessage 0.6976 0.8215 1.1776
P6 ucosTaksManager 0.6976 0.8166 1.1634
P7 | ucosPhilosopher Repast 0.6976 0.8808 1.2626
P8 ucosTimer_Interrupter 0.6976 0.8508 1.2196
P9 ucosLCD_graphic 0.6976 0.8708 1.2483

The average quantitative value is 0.8393 after obfuscation,
which is greater than 0.6976 of the source code. The results
prove that programs after obfuscation are securer and the time
and space overhead is acceptable. Figure 8 shows the
increased overhead of each test after obfuscation.

o (Times) |
P8

mmmm Control flow cyclomatic complexity == Time cost

(Pro_]ects)

mm Space cost Quantitative value of effectiveness

Fig. 8. The increased overhead after obfuscation.

The results also show that the more programs are
obfuscated in a project, the more effective they are to resist to
reverse analysis, while the higher the overhead is.

VIL

We found that code obfuscation can significantly improve
the security of embedded software and we have implemented
an automatic code obfuscator. The obfuscator based on a
control flow flattening algorithm and is designed to protect
software on different platforms. We reduced the overhead of
the obfuscator by choosing an appropriate obfuscation
algorithm and protecting only some critical functions. A
multi-level quantitative model was put forward to evaluate the
effectiveness. Experiments on two different platforms verify
the correctness of the model and the effectiveness of the
obfuscator.

CONCLUSION

One of the novel ideas we explored was the source-level
obfuscation in order to fit different embedded platforms.
However, more algorithms need to be implemented to provide
users with more choices and verify which method is better for
embedded software. Our future work will focus on more
implementation and evaluation, and then perform some
optimization of the algorithm.

ACKNOWLEDGMENT

We thank the reviewers for helpful comments. This work
is supported by the Major Science and Technology Special
Project of Sichuan Province (No. 2018GZDZX0009) and the
Introducing Program of Dongguan for Leading Talents in
Innovation and Entrepreneur (Dongren Han [2018], No. 738).

(1]

(2]

(3]

[10]

[11]

[12]

[13

[14]

REFERENCES

2017 embedded markets study.
https://m.eet.com/media/1246048/2017-embedded-market-study.pdf.
Accessed: 2017-5-4.

C. Collberg, C. Thomborson, and D. Low, “A taxonomy of
obfuscating transformations,” Department of Computer Science, The
University of Auckland, New Zealand, Tech. Rep., 1997.

McCabe, T.J., Watson, A.H. “Software complexity,” in Journal of
Defense Software Engineering, vol. 7, pp. 5-9, 1994.

Christian S. Collberg and Clark Thomborson. “Watermarking,
Tamper-Proofing, and Obfuscation -- Tools for Software Protection,”in
IEEE Transactions on Software Engineering, vol. 28, no. 8, pp.735-
746, 2002.

Field, Scott A. , and J. D. Schwartz . “Secure boot,” European Patent
EP1872231A2, January 02, 2008.

Pike, Lee, Hickey, Patrick Christopher et al., “Software security via
control flow integrity checking,” U.S. Patent 9846717, December 19,
2017.

D. Ji, Q. Zhang, S. Zhao, Z. Shi and Y. Guan, “MicroTEE: designing
TEE OS based on the microkernel architecture,” in 2019 18th IEEE
International Conference On Trust, Security And Privacy In
Computing And Communications/13th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE) , 2019,
pp. 26-33.

M.A. Murillo-Escobar, C. Cruz-Hernandez, F. Abundiz-Pérez, and
R.M. Lopez-Gutiérrez. “A robust embedded biometric authentication
system based on fingerprint and chaotic encryption,” in Expert Systems
with Application, vol. 42, 1n0.21, pp. 8198-8211, 2015.

Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi, “Just-in-time code
reuse: on the effectiveness of fine-grained address space layout
randomization,” in [EEE Symposium on Security and Privacy (SP).
IEEE, 2013, pp. 574-588.

W. Luo, Y. Hu, H. Jiang and J. Wang, “Authentication by Encrypted
Negative Password,” in /EEE Transactions on Information Forensics
and Security, vol. 14, no. 1, pp. 114-128, 2019.

L.Ren, C. W. Fletcher, A. Kwon, M. van Dijk and S. Devadas, “Design
and Implementation of the Ascend Secure Processor,” in [EEE
Transactions on Dependable and Secure Computing, vol. 16, no. 2, pp.
204-216,2019.

Z. Liu, H. Seo, A. Castiglione, K. R. Choo and H. Kim, “Memory-
Efficient Implementation of Elliptic Curve Cryptography for the
Internet-of-Things,” in IEEE Transactions on Dependable and Secure
Computing, vol. 16, no. 3, pp. 521-529, 2019.

B. Dai and Y. Luo, “An Improved Feedback Coding Scheme for the
Wire-Tap Channel,” in /[EEE Transactions on Information Forensics
and Security, vol. 14, no. 1, pp. 262-271, 2019.

C. X. Wang. “A security architecture for survivability mechanisms,”
Department of Computer Science, The University of Virginia, USA,
Ph.D. Dissertation, 2000.

1613

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson,
“Software tamper resistance: obstructing static analysis of programs,”
Department of Computer Science, University of Virginia, USA, Tech.
Rep., 2000.

Timea Laszl6 and Akos Kiss, “Obfuscating C++ programs via control
flow flattening,” in Annales Universitatis Scientiarum Budapestinensis
de Rolando Eétvos Nominatae. Sectio Computatorica, vol. 30, pp. 2-
19, 2009.

D. Xu, J. Ming, and D. Wu, “Generalized dynamic opaque predicates:
A new control flow obfuscation method,” in ISC 2016, ser. Lecture
Notes in Computer Science, vol. 9866, pp. 323-342. Springer, 2016.

Xin Xie, Fenlin Liu, Bin Lu, and Fei Xiang, “Mixed obfuscation of
overlapping instruction and self-modify code based on hyper-chaotic
opaque predicates,” in 2014 Tenth International Conference on
Computational Intelligence and Security. IEEE, 2014, pp. 524-528.

Behera C K , Bhaskari D L , “Self-modifying code: a provable
technique for enhancing program obfuscation,” in International

Jjournal of secure software engineering, vol. 8, no. 3, 2017, pp. 24-41.

B. Yadegari and S. Debray, “Symbolic execution of obfuscated code,”
in 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 732-744.

Pratiksha Gautam and Hemraj Saini. “A Novel Software Protection
Approach for Code Obfuscation to Enhance Software Security,” in
International Journal of Mobile Computing and Multimedia
Communications, vol. 8, no. 1, 2017, pp. 34-47.

Matias Madou, Ludo Van Put, and Koen De Bosschere, “LOCO: an
interactive code (de)obfuscation tool,” in proceedings of the 2006 ACM
SIGPLAN symposium on Partial evaluation and semantics-based
program manipulation (PEPM °06). Association for Computing
Machinery, 2006, pp. 140-144.

Xuerui Pan, Research on static obfuscation and dynamic defense on
android platform, Nanjing University, Nanjing, 2015.

Zhang Quan, Shu Hui, Li Jingrui, “Research on code obfuscation based
on LLVM under Win32 platform,” in Journal of Information
Engineering University, vol. 19, no. 4, pp. 498-502, 2018.

Pan Yan, Zhu Yuefei and Lin Wei, “Code obfuscation based on
instructions swapping,” Journal of Software, vol. 30, no. 6, pp. 1778-
1792, 2019.

M. Fyrbiak, S. Rokicki, N. Bissantz, R. Tessier and C. Paar, "Hybrid
Obfuscation to Protect Against Disclosure Attacks on Embedded
Microprocessors," in /EEE Transactions on Computers, vol. 67, no. 3,
pp. 307-321, 1 March 2018.

Chakraborty R.S., Narasimhan S., Bhunia S, “Embedded Software
Security through Key-Based Control Flow Obfuscation,” in
International Conference on Security Aspects in Information
Technology, vol 7011, pp. 30-44, 2011.

Naoki Fujieda, Tasuku Tanaka, Shuichi Ichikawa, “Design and
implementation of instruction indirection for embedded software
obfuscation,” Microprocessors and Microsystems, vol. 45, pp. 115-
128, 2016.

